Los contenedores proporcionan una forma ligera de llevar las cargas de trabajo de las aplicaciones a la portabilidad, como una máquina virtual, pero sin la sobrecarga y el volumen que normalmente se asocian con las máquinas virtuales. Con los contenedores, las aplicaciones y los servicios se pueden empaquetar y mover libremente entre entornos físicos, virtuales o en la nube.
Docker, un sistema de creación y administración de contenedores creado por Docker Inc., toma la funcionalidad de contenedor nativa que se encuentra en Linux y la pone a disposición de los usuarios finales a través de una interfaz de línea de comandos y un conjunto de API.
Muchos componentes de aplicaciones comunes ahora están disponibles como contenedores Docker empaquetados, lo que facilita la implementación de pilas de software como componentes desacoplados (el modelo de microservicios). Dicho esto, es útil saber cómo encajan las piezas desde adentro hacia afuera.
Por lo tanto, en esta guía, instalo el servidor web Apache en un contenedor Docker e investigo cómo funciona Docker en el camino.
Instalar Docker
Estoy usando Ubuntu como base de la compilación de Docker. Ubuntu no es solo una distribución popular y ampliamente utilizada, sino que el propio equipo de Docker usa Ubuntu para el desarrollo, y Docker es compatible con Ubuntu Server desde las versiones 12.04 y posteriores. En aras de la simplicidad, comienzo con instrucciones cuando uso una instalación nueva de Ubuntu 16.04.
Preparar Ubuntu Linux para Docker
Lo primero que debe hacer es obtener la versión adecuada del kernel y sus encabezados:
$ sudo apt-get install --install-recommends linux-generic-hwe-16.04
Este proceso puede llevar algún tiempo y será necesario reiniciar cuando haya terminado:
$ sudo reboot
Es posible que también deba actualizar otros paquetes en el sistema posteriormente:
$ sudo apt-get update
$ sudo apt-get upgrade
Instalar Docker en Ubuntu
La instalación de Docker en las distribuciones de Linux CentOS, Fedora, Debian, Ubuntu y Raspbian se facilita mediante un script de shell que puede descargar desde //get.docker.com/. Para eso necesitarás el curl
comando. Para obtener la versión más reciente de curl
:
sudo apt-get install curl
Una vez que lo haya curl
instalado, obtenga el script de instalación y configúrelo en ejecución:
curl -s //get.docker.com | sudo sh
Cuando el script termina de instalarse, verá una nota como la siguiente, con detalles de instalación sobre la versión de Docker, tanto los componentes del cliente como del servidor:

Tenga en cuenta los detalles cerca de la parte inferior sobre cómo agregar usuarios no root a Docker. Es conveniente hacer esto, pero si lo hace, se recomienda crear un usuario que no sea root específicamente para trabajar con Docker y para ninguna otra función. Sin embargo, por el bien de este tutorial, me quedo con el uso sudo
para ejecutar Docker a través de un usuario sin privilegios.
Ahora puede probar un contenedor Docker básico:
$ sudo docker run -i -t ubuntu /bin/bash
Este comando descarga la imagen genérica de Docker Ubuntu (según el ubuntu
parámetro) y ejecuta el /bin/bash
comando en ese contenedor. Las opciones -i
y -t
abren la entrada estándar y un pseudo TTY respectivamente.
Si tiene éxito, debería ver que el nombre de host en el símbolo del sistema cambia a algo como [email protected]:/#
, que indica el número de identificación (y el nombre de host) de su nuevo contenedor en ejecución. Para salir, escriba lo exit
mismo que haría para salir de cualquier sesión de shell.
Ahora debería tener una instalación de Docker funcional en su servidor. Puede probarlo y obtener información básica usando el docker info
comando:
$ sudo docker info
The output of the
docker info
command shows the number of containers and images, among other pertinent information. Note that it may be quite lengthy; this example shows only the last of two pages.
One last change you will need to make if you’re running Ubuntu’s UFW firewall is to allow for packet forwarding. You can check whether UFW is running by entering the following:
$ sudo ufw status
If the command returns a status of inactive, you can skip this next step. Otherwise you will need to edit the UFW configuration file /etc/default/ufw and change the policy for forwarding from DROP
to ACCEPT
. To do this using the Nano editor, enter the following:
$ sudo nano /etc/default/ufw
And change this line:
DEFAULT_FORWARD_POLICY="DROP"
To this:
DEFAULT_FORWARD_POLICY="ACCEPT"
Save the file, then run:
$ sudo ufw reload
Work with Docker images and Docker containers
Docker containers are much more efficient than virtual machines. When a container is not running a process, it is completely dormant. You might think of Docker containers as self-contained processes—when they’re not actively running, they consume no resources apart from storage.
You can view active and inactive containers using the docker ps
command:
# This command will show ALL containers on the system
$ sudo docker ps -a
# This will show only RUNNING containers
$ sudo docker ps
You can view all available commands by simply entering docker
. For an up-to-date rundown of all commands, their options, and full descriptions, consult the official command-line client documentation.
When I ran docker run
earlier, that command automatically pulled an Ubuntu container image from the Docker Hub registry service. Most of the time, though, you’ll want to pull container images into the local cache ahead of time, rather than do that on demand. To do so, use docker pull
, like this:
$ sudo docker pull ubuntu
A full, searchable list of images and repositories is available on the Docker Hub.
Docker images vs. containers
Something worth spelling out at this point is how images, containers, and the pull/push process all work together.
Docker containers are built from images, which are essentially shells of operating systems that contain the necessary binaries and libraries to run applications in a container.
Images are labeled with tags, essentially metadata, that make it easy to store and pull different versions of an image. Naturally, a single image can be associated with multiple tags: ubuntu:16.04
, ubuntu:xenial-20171201
, ubuntu:xenial
, ubuntu:latest
.
When I typed docker pull ubuntu
earlier, I pulled the default Ubuntu image from the Ubuntu repository, which is the image tagged latest
. In other words, the command docker pull ubuntu
is equivalent to docker pull ubuntu:latest
and (at the time of this writing) docker pull ubuntu:xenial
.
Note that if I had typed:
$ sudo docker pull -a ubuntu
I would have puledl all images (the -a
flag) in the Ubuntu repository into my local system. Most of the time, though, you will want either the default image or a specific version. For example, if you want the image for Ubuntu Saucy Salamander, you’d use docker pull -a ubuntu:saucy
to fetch the image with that particular tag from that repo.
The same logic behind repos and tags applies to other manipulations of images. If you pulled saucy
as per the above example, you would run it by typing sudo docker run -i -t ubuntu:saucy /bin/bash
. If you type sudo docker image rm ubuntu
, to remove the ubuntu
image, it will remove only the image tagged latest
. To remove images other than the default, such as Ubuntu Saucy, you must include the appropriate tag:
sudo docker image rm ubuntu:saucy
Docker image and container workflow
Back to working with images. Once you’ve pulled an image, whatever it may be, you create a live container from it (as I’ve shown) by executing the docker run
command. After you have added software and changed any settings inside the container, you can create a new image from those changes by using the docker commit
command.
It’s important to note that Docker only stores the deltas, or changes, in images built from other images. As you build your own images, only the changes you make to the base image are stored in the new image, which links back to the base image for all its dependencies. Thus you can create images that have a virtual size of 266MB, but take up only a few megabytes on disk, due to this efficiency.
Fully configured containers can then be pushed up to a central repository to be used elsewhere in the organization or even shared publicly. In this way, an application developer can publish a public container for an app, or you can create private repositories to store all the containers used internally by your organization.
Create a new Docker image from a container
Now that you have a better understanding of how images and containers work, let’s set up a Apache web server container and make it permanent.
Start with a new Docker container
First, you need to build a new container. There are a few ways to do this, but because you have a few commands to run, start a root shell in a new container:
$ sudo docker run -i -t --name apache_web ubuntu /bin/bash
This creates a new container with a unique ID and the name apache_web
. It also gives you a root shell because you specified /bin/bash
as the command to run. Now install the Apache web server using apt-get
:
[email protected]:/# apt-get update
[email protected]:/# apt-get install apache2
Note that you don’t need to use sudo
, because your’re running as root inside the container. Note that you do need to run apt-get update
, because, again, the package list inside the container is not the same as the one outside of it.
The normal apt-get
output appears, and the Apache2 package is installed in your new container. Once the install has completed, start Apache, install curl, and test the installation, all from within your container:
[email protected]:/# service apache2 start
[email protected]:/# apt-get install curl
[email protected]:/# curl //localhost
Following the last command, you should see the raw HTML of the default Apache page displayed in the console. This means our Apache server is installed and running in your container.
If you were doing this in a production environment, you’d next configure Apache to your requirements and install an application for it to serve. Docker letd directories outside a container be mapped to paths inside it, so one approach is to store your web app in a directory on the host and make it visible to the container through a mapping.
Create a startup script for a Docker container
Remember that a Docker container runs only as long as its process or processes are active. So if the process you launch when you first run a container moves into the background, like a system daemon, Docker will stop the container. Therefore, you need to run Apache in the foreground when the container launches, so that the container doesn’t exit as soon as it fires up.
Create a script, startapache.sh, in /usr/local/sbin:
# You might need to first install Nano inside the container
[email protected]:/# apt-get install nano
[email protected]:/# nano /usr/local/sbin/startapache.sh
In the startapache.sh file, add these lines:
#!/bin/bash
. /etc/apache2/envvars
/usr/sbin/apache2 -D FOREGROUND
Write the changes and save the file. Then make it executable:
[email protected]:/# chmod +x /usr/local/sbin/startapache.sh
All this small script does is bring in the appropriate environment variables for Apache and start the Apache process in the foreground.
You’re done modifying the contents of the container, so you can leave the container by typing exit
. When you exit the container, the container will stop.
Commit the container to create a new Docker image
Now you need to commit the container to save the changes you’ve made:
$ sudo docker commit apache_web local:apache_web
The commit will save your container as a new image and return a unique ID. The argument local:apache_web
will cause the commit to be placed in a local repository named local
with a tag of apache_web
.
You can see this by running the command sudo docker images
:
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
local apache_web d95238078ab0 4 minutes ago 284.1 MB
Note that the exact details of your image—the image ID, the size of the container—will be different from my example.
Docker containers are designed to be immutable. Whenever you commit changes to a container, the results are written out to an entirely new container, never to the original. If you want to swap out Apache with, say, Nginx, you would start with the original ubuntu:latest
container, add Nginx to that, and save out the results as an all-new container named something like local:nginx
.
Understand Docker networking basics
Now that you have our image, you can start our container and begin serving pages. Before you do, however, let me take a moment to explain how Docker handles networking.
When Docker is installed, it creates three virtual networks that can be used by Docker containers:
bridge: This is the network that containers connect to by default. The bridge network allows containers to talk to each other directly, but not to the host system.
host: This network lets containers be seen by the host directly, as if any apps within them were running as local network services.
none: This is essentially a null or loopback network. A container connected to none can’t see anything but itself.
When you want to launch a container and have it communicate with both other containers and the outside world, you need to manually map ports from that container to the host. For the sake of my example, you can do this on the command line when you launch your newly created container:
$ sudo docker run -d -p 8080:80 --name apache local:apache_web /usr/local/sbin/startapache.sh